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SHENRON - Scalable, High Fidelity and
EfficieNt Radar SimulatiON
Kshitiz Bansal , Gautham Reddy , and Dinesh Bharadia

Abstract—Radar Simulations have become an essential tool
in radar algorithm development and testing due to the lack of
available high-resolution radar datasets and enormous difficulty
in acquiring real-world data. However, simulating radar data is
challenging as existing radar simulation tools are not easily ac-
cessible, require detailed mesh inputs and take hours to simulate.
To address these issues, we present SHENRON, an open-source
framework that efficiently simulates high-fidelity MIMO radar
data using only lidar point cloud and camera images. We show
that with SHENRON, one can generate simulated data that can be
used to evaluate algorithms as effectively as on real data. Further,
one can perform quick iterations through a vast parameter space
of the radar to find the best set of parameters for any application,
significantly aiding research in radar perception and sensor fusion.

Index Terms—Object detection, segmentation and categori-
zation, simulation and animation.

I. INTRODUCTION

THE adoption of high-resolution millimeter-wave
(mmWave) radars in autonomous systems has increased

due to their reliability in adverse conditions such as fog or
smoke. However, radar algorithm development and widespread
deployment for various applications have not kept pace with
lidars and cameras, primarily due to the scarcity of available
high-resolution radar data, which hinders rapid algorithm
development and testing. Additionally, the performance of
radar algorithms depends on the configuration used during
radar data collection, and each application requires a unique set
of configurations. For instance, detecting high-speed vehicles
on the road over long distances requires a high maximum
range and speed configuration, while tracking and identifying
humans in a warehouse may require a lesser maximum range or
speed but better resolution in range and speed. These different
configurations in radar are obtained by choosing different
values for parameters, such as the bandwidth of signal or
the time between frames. Finding a good configuration for
a particular application requires iterations through the vast
space of radar parameters which in turn requires extensive
real-world data collection. Still, these parameters are only
good for the application where they have been tested. Due to
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this, deploying radars for new applications quite often suffer
from what is known as a “cold-start problem”, i.e. a significant
real-world data collection effort is required to even find a
good set of parameters before algorithm development can
start [1].

To tackle the problem of data scarcity, simulations provide
a unique opportunity. For radars, having access to simulations
can provide large-scale data for algorithm development and
testing, and also allow quick iterations through the radar’s vast
parameter space to find a small set of good parameters for
a particular application. Such a simulator should fulfill four
crucial requirements; R1 - time and compute efficiency for rapid
iteration through vast parameter space, R2 - ease of defining
the input for wider applicability, R3 - scalability for large-scale
testing in diverse conditions and R4 - configurability to test
different kinds of radars and parameters.

The existing commercial radar simulation tools [2], [3] are not
openly accessible and require users to input high-quality mesh
and material definitions for defining a scene and its objects.
This is simply not possible in many cases, as generating a
detailed mesh requires expert knowledge and equipment, and a
poorly designed mesh could significantly hurt the performance
of simulations, violating requirement R2. Even if one generates
a detailed mesh, scaling to new scenes again requires significant
effort. This makes these tools difficult to use and hard to scale
to new conditions, violating requirement R3. Further, for scenes
with complex meshes, simulation time can reach an order of
hours as it takes a long time to simulate the exact physics
of electromagnetic interactions, violating R1 and making it
infeasible to scale up the simulations, violating R3. Moreover,
most of these tools have only support limited radar configuration
such as single transmitter and receiver, violating R4.

In this paper, we present SHENRON, a highly efficient,
easy-to-use and scalable method of simulating high-resolution
radar data. Rather than requiring a detailed mapping of the
environment generated by an expert, we design a simulator that
only needs a sparse lidar point cloud and a camera image to
generate high-fidelity radar data (Fig. 1) (R2). This means that
SHENRON can immediately convert all the existing large-scale
labeled lidar datasets into radar datasets with user-defined pa-
rameters, allowing for rapid algorithm development and testing
data large scale (R3). SHENRON’s design is flexible and can
be used to create simulation for any radar waveform or antenna
configuration (R4). Most importantly, a user can simply scan
any space with a sparse lidar and camera and use SHENRON
to rapidly evaluate multiple radar configurations for their choice
of application. Hence, SHENRON, for the first time, makes the
rapid design, testing and parameter search for radar perception
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Fig. 1. Current radar simulators need high-quality mesh input to simulate
radars. We present SHENRON that uses only a sparse lidar and camera input to
generate high resolution radar data. Above is an example of automotive radar
data generation using a lidar and camera from Kitti dataset.

possible, without needing expensive data collection effort or
compute heavy mesh-based sensor simulations.

A major challenge in using raw lidar data as the basis for
radar simulations is that it lacks the crucial material information
required to model RF reflections. In SHENRON, we solve this
problem by using the semantic information present in the camera
to identify objects present in the scene. We map this semantic
information to accurate RF reflection profiles of different objects
using real-world measurements and physics-based modelling.
With these derived reflection profiles, we are able to significantly
improve the runtime of the simulator compared to commercial
software (R1), while keeping the simulations high-fidelity.

The main objective of any simulation is to accurately predict
the performance an algorithm would achieve when deployed in
real world [4]. In our evaluations, we show that SHENRON’s
power profiles achieves a very high correlation value of 0.8433
when compared to real-world data. Further, we choose the com-
monly used indoor and outdoor algorithms of mapping and ob-
ject detection and show how SHENRON can accurately predict
the performance obtained by different algorithms in real world,
only by using simulated data. We demonstrate the generalization
capability of our system by evaluating it using two different
radars operating at 77 GHz and 24 GHz frequencies. SHENRON
is open-source and available at https://wcsng.ucsd.edu/shenron/.

In summary, we make the following contributions:
� We provide an open-source radar simulation framework,

that eliminates the need for high-quality meshes and pro-
vides large-scale radar data only using sparse lidar point
clouds.

� We show how a camera image can be used to obtain the
missing material information in lidar point clouds.

� We derive highly accurate RF reflection profiles using real-
world measurements that make the simulations fast and
high-fidelity.

� We perform indoor and outdoor case studies showing how
SHENRON helps in algorithm development, training and
testing models and parameter tuning.

II. RELATED WORK

Wireless Channel Solvers: Commercial wireless solvers use
ray-tracing and EM wave models to provide the wireless channel
for the scenes. HFSS SBR+ (shooting and bouncing rays) [2]
uses geometric optics (GO), uniform theory of diffraction (UTD)
and creeping wave physics to simulate radar data and Sligar
et al. [5] uses HFSS SBR+ solver and generate range-doppler

data. However, they do not account for the diffused scattering
effects of radar signals. Remcom’s Wavefarer [3], [6] further
extend the framework to include diffused scattering using the
models provided in [7]. The major shortcoming of these tools
is the heavy dependence on the high-quality meshes that re-
quire expert equipment, are difficult to scale and have large
time and memory requirements (requirements R1. R2 and R3).
Furthermore, they do not provide the ability to simulate multi-
antenna radar data, limiting their application for variety of
use-cases (requirement R4). SHENRON presents a technique to
accurately simulate high-resolution MIMO (multi-input multi-
output) radar data without needing high-quality meshes, thereby
reducing time and memory, as well as making it much more
scalable.

Single channel radar: There have been efforts in the past to
simulate radar either as a sensor to detect objects as point tar-
gets or simulate range-doppler data for single channel between
transmit and receive [8], [9], [10]. Li et al. [11] uses a visibility
based model of targets and radar range equation to simulate
received power. However, they do not consider the effect of
extended targets and the scattering phenomenon of radar signals.
Machida et al. [12] propose a new method to perform SBR in
an efficient manner. However, they use Torrance-sparrow model
of reflection which is only an extension of specular reflections
to rough surfaces. They also do not model scattering of radar
signals and do not provide validation against the real data.

MIMO radar: To the best of our knowledge, the only past
work that performs simulation for MIMO radar is from Schussler
et al. [13]. However, as they also use meshes as input, it requires
expert modelling and can not be used to convert existing lidar
based datasets into radar (requirement R2). Moreover, they do
not provide any details about how to obtain materials for large
scale simulations, limiting their applicability to define large scale
scenes (requirement R3).

Lidar to Radar translation: Deep learning based approaches
L2R-GAN [14] and There and Back again [15] use a neural
network to learn the sensor model of radar. However, using deep
learning based simulations limits the flexibility of simulations.
These approaches have only been used to simulate mechanical
radar and are not easily scalable to other types of radars such
as MIMO radar or radars with different antenna geometries
(requirement R4). This severely constraints the applicability of
these simulation frameworks. SHENRON uses physics based
models to achieve high-fidelity radar simulations, hence mak-
ing possible the simulation of any kind of radar signal and
parameters.

III. BACKGROUND AND MOTIVATION

An automotive MIMO radar uses antenna arrays as transmitter
and receivers. A radar antenna radiates energy in the space
defined by its field of view in form of millimeter waves [16].
These waves interact with all the objects in the scene based
on their visibility from radar. The interaction of the waves
with objects is in the form of specular reflections and diffused
scattering [17]. The amount of energy making its way back to
the radar from that object surface is determined based on the
orientation of the surface and its material properties. During the
reception in radar, all the reflections add up at the receiver and
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Fig. 2. Overview of SHENRON. We first obtain the scene from the lidar point
clouds and infer material properties using camera images. This information along
with derived RF reflection profiles is used to model accurate reflection power
and is finally converted to radar data using the DSP module. Green, Yellow:
Cars; Red: Traffic Sign.

sampled by an ADC (analog to digital converter). Radars either
directly provide raw ADC samples or filtered point clouds. The
latter are obtained by using a detection technique like CFAR
(Constant False Alarm Rate) filtering [18], which detects the
energy corresponding to any object’s reflection, by estimating
the local noise power. For either data format to be accurate, it is
extremely important to correctly model the power return from
the surface of objects. Failure to do so may cause the object to
be indistinguishable from noise.

The objective of SHENRON is to accurately simulate the radar
data for a given scene and simple object representations. In the
next section, we first dive into the idea of how these object
representations can be generated in a scalable way by piggy-
backing on top of how a lidar perceives these objects, instead of
requiring complicated meshes/environment geometries. Moving
ahead, we would discuss how additional properties, like material
types can be obtained to enhance the point clouds, as well as
help model the reflections accurately for the radar signal. Fig. 2
provides an overview of SHENRON.

IV. SHENRON

A. Lidar Point Cloud as an Input

Typically in a simulation environment, when a mesh defines
a surface, a ray-tracer returns all the points of interaction of
the signal with the surfaces of objects present in the scene. This
provides an impulse response of the scene in the form of interac-
tion points and their power of reflection. This impulse response
can be convolved with a radar waveform to generate the radar
data. If one can obtain these interaction points in an efficient
way and model the power reflected from each point accurately,
it would obviate the need of using a mesh input. We make a
key observation that lidar sensors scan the real environment by
shooting rays. These rays travel from the lidar sensor, and reflect
back towards the lidar after interacting with any surface. Due
to this nature of operation, lidar directly captures the impulse
response of a real world scene in the form of a point cloud,
where each point denotes a point of interaction. Modern lidars

have high angular resolution, and they generate point clouds
with uniform polar density allowing them to cover the scene in
great detail. Hence, SHENRON directly uses these lidar point
clouds as input to represent the scene geometry in a simple
and efficient form. This approach allows any user to directly
collect real-world data of the domain of interest along with
its finer details and efficiently simulate radar data. Moreover,
there are abundant open-source lidar point cloud datasets that
have data from real-life traffic scenarios. Using these datasets
in SHENRON, one can generate large amounts of radar data,
which use real-life scenes as input geometry.

B. Obtaining the Power of Reflections

Lidar point cloud provides us the points of interaction, but to
faithfully capture the radar behavior, it is important to model the
power of reflections very accurately. The two main factors that
dictate the reflections from a surface are the surface geometry
and its material properties. In simple words, the geometry or
orientation of the surface determines the direction of reflection
while the material properties such as permittivity, determines
the amount of reflection power. For obtaining the orientation
of the surface, we calculate the outward normal vectors from
object surfaces using RANSAC plane fitting method in the
neighbourhood of each lidar point. These normal vectors provide
the orientation of the local surface of object at each lidar point.
However, the information about the material properties is still
absent from the lidar point cloud. In SHENRON, we provide a
novel way to obtain these properties by using camera images,
which are usually present in most large scale datasets along with
the lidar point clouds.

Material from camera: Recent advancements in camera se-
mantic scene segmentation have shown the robustness of identi-
fying and segmenting objects in a camera image [19]. We use a
pretrained neural network [20] for obtaining the semantic maps
of the camera image. After obtaining these semantics, we project
the lidar point cloud on the camera image and associate each
point with its corresponding object class from the semantic map.
In the next sections, we will list the classes we used and how
they were mapped to radar usable object models.

C. Modeling Radar Reflections From Lidar

In this section, first, we will describe how we physically
model the radar reflections from the lidar point cloud, given the
material properties. Finally, towards the end, we will describe
how we mapped the classes obtained from camera to the required
material properties using these physical models.

1) Interaction of EM Waves With Surfaces: We treat the EM
wave interaction with a surface as a combination of penetrated
energy and reflected energy. The reflected energy is further
divided into specular energy and diffuse scattered energy. For
an ideal planar surface, laws of reflection state that all reflected
energy should go into specular direction, but due to the rough-
ness of surfaces a lot of energy actually scatters after reflection.
In our experiments, we found that this split sufficiently models
the real radar data.

First, we determine the total incident power on each point of
the point cloud. Each point in the point cloud is expanded to a
surfel. The surfel size is chosen based on the angular separation
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Fig. 3. Scattering Profiles: Figure shows the effect of changing parameters on the scattering profiles. For each plot, we only change one parameter, keeping others
fixed.

of lidar rays in vertical and horizontal directions. Incident power
at each surfel in the point cloud is then estimated based on its
distance and surface area. Now, the fraction of power reflected
from each such surfel is determined by the material and the
orientation of the local surface. The incident power is first split
into penetrated and reflected power: |Ēi|2 = |ĒR|2 + |ĒP |2,
where |Ēi|2 is the incident power, |ĒR|2 is the total reflected
power and |ĒP |2 is the penetrated power. We use Fresnel coeffi-
cients of reflections and transmission to determine the power
distribution among both terms: Γ(ε, θ) = |ĒR|2/|Ēi|2 where
Γ(ε, θ) is the Fresnel reflection co-efficient, which is dependent
on the permittivity (ε) and incident angle with respect to normal
(θ = θi). Note that the permittivity (ε) is the first material
property we need to determine for any material. Next, the total
reflected power is split into the scatter and specular components.

2) Specular Power: We refer to specular reflections as the
energy governed by the laws of reflection where the incidence
angle equals the angle of reflection. At mmwave frequencies,
these types of reflections carry a significant amount of power.
However, the surface roughness causes some power to be spent
in scattering: |ẼSP |2 = |Ēi|2 ∗ Γ2 ∗R2 whereR2 is the ratio of
specular power (|ẼSP |2) over total reflected power (|ĒR|2). The
value of reduction ratio R depends on the surface roughness of a
material [21]:R = e−0.5(4πσh cos θ/Λ)2 where σh is the standard
deviation of surface roughness and also the second material
property we need to determine for a material.Λ is the wavelength
of EM wave. Since in radars, the receiver is situated close to
transmitter, we only consider the specular power return when the
incident ray direction is within 2 deg threshold of the normal.

3) Scattered Power: Scattered power is composed of the
non-specular component of the total reflected power which
is caused by surface roughness. The angular distribution of
the scattered power has been studied comprehensively in past
work [7]. We use the double lobe back scatter model defined for
scatter reflections, as it contributes prominently in the case of
co-located transmitter and receivers which is the case in radars.
The double lobe model is given by

L2 = Λ ∗
(
1 + cosψr

2

)αR

+ (1− Λ)

(
1 + cosψi

2

)αI

(1)

|ẼDS |2 = Pi ∗ Γ2 ∗ (1−R2) ∗ L2 (2)

whereL is the power distribution of scattered power (|ẼDS |2) as
the function of angle;ψr is the angle between query and reflected

TABLE I
MAPPING OF CAMERA SEMANTIC CLASSES TO MATERIAL PARAMETERS

USED IN SIMULATION

ray direction, ψi is the angle between query and incident ray
direction, Λ is the repartition factor between the amplitudes of
front and back scatter lobe (Fig. 3(d)). The αI , αR parameter
controls the lobe shape and is set from empirical evidence [7].
In case of radar, the query direction is same as the incident ray
direction henceψr = 2θ andψi = 0, θ is the incident angle (also
the query angle). Putting these values in (1):

L2 = (Λ ∗ (cos2 θ)αR + (1− Λ)) αR = 1, 2, . . . (3)

4) Determining Material Parameters: With the above for-
mulation, we find that each material can be described by using
the correct parameter values in above model. Specifically, for
each material, we determine σ (permittivity) and σH (roughness
standard deviation) to calculate the reflected energy. To deter-
mine these values for each material, we run real-life experiments
and empirically tune the value that best describes the real-world
power patterns. Specifically, we collect data for different mate-
rials at different orientations and distance from both lidar and
radar. Then we compare the power profiles generated by our
simulations and real world radar. We compare the total power and
correlation values. We use this comparison to set the parameters
of our model. Fig. 3 shows how the scattering profile changes by
choosing different values for parameters in our model. Table I
contains the values we used in our simulation.

D. Digital Signal Processing (DSP) Implementation

Having interpreted the scene as a collection of points which
reflect energy through specular or scatter means, the received
signal is generated as a sum of individual reflections to get radar
ADC samples. In SHENRON, the signal processing chain is
modeled after a MIMO-FMCW [16] radar. This block is flexible
which allows various radar system parameters including radar
waveform to be changed.

To generate the ADC samples for a MIMO (Multiple Input
Multiple Output) radar, reflected waves from each point are
constructed with delay based on their time of flight (ToF),

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on February 19,2024 at 00:57:21 UTC from IEEE Xplore.  Restrictions apply. 



1648 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 2, FEBRUARY 2024

amplitude based on path loss and specular/scatter reflection
power return. In the MIMO setup, the ToF at each receive
antenna in the array is calculated, accounting for the difference
in path lengths with respect to each other. Finally, the attenu-
ated and phase shifted reflected waves are cumulatively added
with AWGN (Additive White Gaussian Noise) noise to derive
the complete radar-received signal. This creates a 2D matrix,
with respect to time and antenna dimension, providing range
and angle information of objects in the scene. The DSP block
computes the reflected signal from each point i as an attenuated
and ToF delayed FMCW waveform equation. The final received
waveform is the sum of all individual reflections and additive
gaussian noise (4):

Y =

N∑
i=1

(
Lrefl
i ∗ Lpath

i ∗ ej2π(fc+0.5∗k∗(t−τi))(t−τi)

)

+ nAWGN (4)

where Lrefl
i is the specular/scatter loss, Lpath

i is the path loss,
τi is the ToF, fc is the carrier frequency and k is the frequency
change rate of the FMCW waveform. nAWGN is the AWGN
noise whose amplitude is obtained from real data.

Radar doppler estimation: The doppler information of radar
data provides valuable insights into the movement of objects
relative to the radar. It is measured using the phase changes
across multiple radar chirps within a frame. To simulate accurate
doppler characteristics, lidar point clouds are needed at a frame
rate that matches that of the chirps, which is typically of the
order of a few microseconds. However, lidar datasets often lack
such high frame rates, necessitating the use of labels present in
the datasets to track objects through frames. By determining the
position of an object in different frames and the time between
frames, the instantaneous speed can be calculated. Additionally,
the relative doppler values are obtained by using the ego speed
of radar measured by an IMU sensor. The relative speed of
each point with respect to the radar is then used to calculate
the change in phase generated due to that speed across chirps,
thus simulating the doppler.

V. EVALUATION

A. Evaluating Power Profiles of SHENRON

Experimental setup: We collect data using a co-located setup
of 64-channel ouster lidar, Intel Real Sense Camera and a TI
imaging radar as shown in Fig. 4). To exhaustively cover all the
views of an object a radar would see, we consider 3 types of
scenes in a controlled experiment. For scene 1 the object moves
in a circle in front of the sensor setup. In this scene, the sensor
sees all the orientations of the object allowing us to evaluate
quality of simulations with respect to different orientations. For
scene 2 the object moves in cross-range direction and at multiple
distances. For Scene 3, the object approaches or moves away
from the setup. Scene 2 and 3 represent a more common view of
the objects as generally encountered while driving. Fig. 4 shows
a schematic of each of these scenes. For each scene we collect
8 different runs. Each run consists of 200 frames of sensor data
from each sensor, collected at a rate of 10 Hz. We repeat all these
experiments for both a car and a pedestrian.

Fig. 4. (a) Different maneuvers for controlled experiments. (b) Sensor setup
with TI 77 GHz radar for outdoor experiments. (c) Sensor setup for 24 GHz
radar for the indoor case study. (d) Example scene from controlled experiments.
(e) Example scene from a busy intersection.

Fig. 5. Correlation coefficient values for total power reflected from the object.
We also show the effect of considering specular and scattering profiles on the
correlation.

Correlation of Power Return: For each scene with car, we
calculate the pearson’s correlation between the power profile
generated by simulated and real data. For SHENRON’s simu-
lated power profile, we also show the effect of using the specular
reflection model and scattering model separately to better un-
derstand the contribution of each component. While comparing
with real data, commercial simulator Wavefarer [3] obtains a
correlation value of 0.7199, while SHENRON maintains a high
correlation value of 0.8433 when averaged among all scenarios
(Fig. 5). One thing to note is that scattering alone gets a high
correlation value, but only by using both specular and scatter
profiles, SHENRON can obtain the correct absolute power val-
ues. This is also shown in Fig. 6 that shows the power profile for
a single run from scene 1. When the car is at 90 ◦ orientation,
the contribution of specular component is significant, while in
all other orientations, scattering accounts for most of the power.
This shows the importance of considering both specular and
scattering components in radar simulations, to accurately model
the power reflected by an object.

Qualitative comparison: We present a qualitative analysis of
the contributions of each component of SHENRON in Fig. 7.
Four different cases are considered: no material (where every-
thing is set as metal), specular only, scattering only, and complete
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Fig. 6. Power profile of a car compared against real data for different reflection models. Specular model (a) provides correct power at specular incidence
(+− 90), while scattering model (b) gets the power at almost all angles of incidence. SHENRON (c) accurately models the power profile by suitably combining
the specular and scattering reflection models.

Fig. 7. Qualitative ablation study for SHENRON. The data corresponds to the image shown in Fig. 4 scene 1. The figure shows how the different components
(a)–(c) of SHENRON (d), models different characteristics of the real world scene (e).

Fig. 8. Sim2Real Predictivity. The figure displays occupancy maps for parameter sets 2 and 3 using both real radar data and simulated data. A highlighted box
indicates a corridor mapped differently under these parameter sets. Notably, SHENRON accurately predicts the relative performance of these sets, indicating that
set 2 yields superior mapping results.

SHENRON. The scene includes a car in front of the radar, with
trees and concrete structures in the background (Fig. 4). In the
no material case, the simulator cannot differentiate the power of
reflections based on materials, resulting in similar power returns
for all points. In the specular only case, the specular reflection
peak is accurately captured, but the power distribution across
the car’s body and the background objects (trees and concrete
structures) is not represented. In the scattering only case, the
power distribution is properly estimated for both the car and
background objects, but the strong specular peak is missing.
Finally, SHENRON accurately models both specular and scatter-
ing power returns, producing simulations that closely resemble
real-world data for both the car and background objects.

B. Predicting Object Detection Performance

We assess the effectiveness of SHENRON in a real-world au-
tomotive task, specifically object detection, which is crucial for
the perception stack in autonomous driving. Here, we consider
a case of a general automotive scenario, i.e., a busy intersection.

TABLE II
AVERAGE PRECISION (AP) PERFORMANCE: THE RESULTS SHOW THAT OBJECT

DETECTION TRAINED ON SIMULATED DATA WORKS ALMOST AS GOOD AS ONE

TRAINED ON ACTUAL REAL DATA

We collect data for multiple vehicles passing through the in-
tersection in all directions. Fig. 4(e) shows the environment
where we collect data. We divide the dataset into an 8:2 ratio for
training and testing. The train and test data comes from different
recordings at the intersection.

Experiment Details and Results: We train three networks,
one each on the real and simulated data and one on Gaussian
noise. For the noise experiment, the test set is from real data.
We use U-NET [22] backbone with detection heads for object
detection. We report average precision (AP) metric with IOU
threshold of 0.5. Table II shows the result of this experiment.
The network trained only on simulated data achieves a very
close performance to the network trained on the real data.
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TABLE III
OBJECT DETECTION PERFORMANCE USING RADATRON [23]: THE NETWORK

TRAINED BY AUGMENTING THE DATASET USING SIMULATED DATA GIVES

BETTER PERFORMANCE ON REAL DATA

Only by accurately modeling the environment and vehicle radar
reflections SHENRON creates data that can be used to test
deep learning networks for deployment in the real world.The
marginally higher value in simulated data can be explained by
the fact that both the ground truth (GT) boxes and simulated data
are generated using lidar data and hence there is no misalignment
between GT and simulated radar data, which is not the case
for real data. Further, we see that the network trained solely on
Gaussian noise performs significantly worse than the one trained
on simulated or real data. This underscores the importance
of accurate object representations in the input data for effec-
tive model training, validating that the simulations successfully
mimic the real-world data. Notably, our approach SHENRON,
enables the direct use of real-world lidar data for simulations,
whereas using existing MIMO simulator RadarSimPy https:
//github.com/radarsimx/radarsimpy[Link] with sparse lidar data
converted to mesh using poisson surface reconstruction predicts
performance close to that of noise (Table II)

C. Case Study - Dataset Augmentation Object Detection

In this case study, we demonstrate the effectiveness of using
SHENRON for data generation to enhance the available training
data. We employ a pre-existing radar-based object detection
network called Radatron [23] for our task. To conduct our
experiments, we utilize all the data collected in scene 1-3 for
the controlled experiment as described previously (Fig. 4(a)
and (d)). The collected data is divided equally into training
and testing datasets. The performance of Radatron on this data
is presented in Table III.

Subsequently, we leverage the lidar data from the training set
to generate simulated radar data. This simulated data is then
incorporated into the training process. We evaluate the trained
model on the original test set from real data. The outcomes
reveal a notable 15.023 average precision (IoU 0.5) improve-
ment in performance. This indicates the successful application
of SHENRON in augmenting radar datasets, leading to better
generalization and enhanced performance.

D. Case Study - Radar Parameter Tuning

We perform a case study to show how SHENRON can be
used to solve the “cold-start” problem in radars. The aim is to
understand if SHENRON can predict the relative performance
while using radar with different parameters. We consider the
crucial application of indoor mapping using radar that can aid
in navigation during low visibility scenarios such as fire. To
perform this study, we collect data for an office space of around
50 m x 50 m, using a system of lidar and camera sensors mounted
on a turtle bot, as illustrated in Fig. 4. We use the cartographer
algorithm [24] to obtain a ground truth map which will be used
to assess the quality of map generated using radar data. We

TABLE IV
PARAMETER SETS USED FOR INDOOR STUDY. BW: BANDWIDTH (MHZ);

N: SAMPLES PER CHIRP; Fs: SAMPLING RATE (MHZ); Nchirps: CHIRPS PER

FRAME; Tc: CHIRP REPETITION INTERVAL (MS); R: RANGE; D: DOPPLER;
res: RESOLUTION; max: MAXIMUM

collected approximately 1500 frames at a rate of 10 frames per
second.

We first use lidar and camera data as input to SHENRON to
generate simulated radar point clouds. We performed simula-
tions for different parameter sets as listed in Table IV. Specifi-
cally, we changed the bandwidth used (which determines range
resolution), sampling rate and number of samples per chirp (de-
termining maximum range), time between chirps (determining
maximum doppler) and number of chirps per frame (determining
doppler resolution). We convert the simulated radar data into an
occupancy map using the matlab’s buildMap() function. We then
compare the generated map against the ground truth map created
by cartographer, using the Intersection over Union (IoU) metric.
As expected, different parameter sets generate varying quality
of maps, shown by the IoU values obtained in Table IV. We
find that the parameter sets 1, 2 and 4 provide the most optimal
values.

Now, to validate the predicted performance of different pa-
rameters by SHENRON, we also collect data using a real radar
mounted on the same turtle bot. We perform 6 different data
collection runs in the same office space, one for each param-
eter set from Table IV. Remarkably, the relative performance
between different parameter sets follows the same pattern as
that predicted by SHENRON (Table IV). It is clear from this
evaluation that parameter set 1, 2 and 4 are the optimal sets for
this application compared to sets 3, 5 and 6. Note that the purpose
of this evaluation is to show how SHENRON can predict the
performance of different parameter sets before even collecting
real data. A more exhaustive parameter search would actually
reveal the most optimal parameter sets for use. We also calculate
the Sim-vs-Real Correlation Coefficient (SRCC) which was
proposed by Kadian et al. [4] to measure the predictive ability of
a simulation. The SRCC of this study comes out to be 0.93443,
demonstrating the effectiveness of using SHENRON in predict-
ing the relative performance while using radar with different
parameters, in a quick and efficient manner.The difference in
IoU values between real and simulated data is primarily due to
IoU’s sensitivity to map alignment with lidar ground truth data.
Since SHENRON utilizes lidar as input, it achieves higher IoU
values because of perfect alignment. Fig. 8 shows the qualitative
output for set 2 and 3. The total time spent in going through all
the parameter sets in simulations was around 30 minutes, while
the same real world test took an entire working day. This is only
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TABLE V
TIME AND RAM USAGE

for 6 parameter sets, scaling this for 100+ sets will clearly be
infeasible for real world tests. Hence, this case study clearly
shows how SHENRON can significantly help in the ubiquitous
deployment of radars for several indoor/outdoor applications,
which otherwise would be a daunting task.

E. Time and RAM Usage

We also compare the compute resource utilization of SHEN-
RON against commercial solvers. We run all the simulations in
a Windows PC with 32 GB RAM and 3.19 GHz processor. For
SHENRON, we run a multi-antenna multi-chirp simulation with
the entire scene given by lidar point cloud. For Wavefarer, we run
a simulation for single channel radar and a car mesh with all the
material properties. The total memory used in the simulation
and the time taken for the simulation is provided in Table V.
SHENRON uses 20x time less memory and 1000x times less
time for each simulation. Hence, by using lidar point clouds as
input, SHENRON can provide highly accurate results in a more
efficient and scalable manner.

VI. LIMITATION AND FUTURE WORKS

The radar data generated by SHENRON can be used for
various applications, such as object detection and radar pa-
rameter tuning, as shown in the paper. However, it should be
noted that the simulator’s reliance on lidar and camera data
means that it cannot use datasets with distorted lidar or camera
data due to poor weather conditions. The primary objective of
SHENRON is to provide researchers with access to vast amounts
of radar data to facilitate the development and testing of radar
algorithms. Once developed, these algorithms can simply be
employed in challenging weather conditions, as radar data is
impervious to weather-related interference. A potential avenue
for future research is to expand the range of materials considered
by the system using the method proposed. This could enable
the subdivision of different parts of the same semantic object
into sub-classes, such as car windows and tires, or address
material interaction challenges, particularly for materials like
thin cardboard that allow mmwave to pass but yield different
results for lidar signals. Secondly, SHENRON only considers
direct reflections of radar signals. In the future, we can use
splat-based techniques to perform ray-tracing directly on lidar
point clouds and even capture multipath reflections.
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